#### **Year 11 Higher Combined Science Crib Sheet**

#### **BIOLOGY PAPER 1**

**EXAM DATE: 17th May (Morning)** 

Primrose Kitten Video <a href="https://www.youtube.com/watch?v=mKYQ-K23Mr4">https://www.youtube.com/watch?v=mKYQ-K23Mr4</a>

Practicals;

- 3: use qualitative reagents to test for a range of carbohydrates, lipids and proteins.
- 4: investigate the effect of pH on the rate of reaction of amylase enzyme.
- 5: investigate the effect of light on the rate of photosynthesis of an aquatic plant such as pondweed.

List of topics in Specification order;

- -Cell division
- -Animal tissues, organs and organ systems
- -Photosynthesis

#### Topics **not assessed** in this paper:

- -Microscopy
- -Transport in cells
- -Plant tissues, organs and systems
- -Viral diseases
- -Fungal diseases
- -Protist diseases
- -Human defence systems
- -Uses of glucose from photosynthesis
- -Response to exercise

Topics not listed may be assessed in low-tariff questions

#### **CHEMISTRY PAPER 1**

EXAM DATE: 27th May (Morning)

Primrose Kitten Video: <a href="https://www.youtube.com/watch?v=MpQ-3YAwNhl">https://www.youtube.com/watch?v=MpQ-3YAwNhl</a>

Practicals;

8: preparation of a pure, dry sample of a soluble salt

9: investigate what happens when aqueous solutions are electrolysed

10: investigate the variables that affect temperature changes in reacting solutions

List of topics in Specification order;

- -How bonding and structure are related to the properties of substances
- -Use of amount of substance in relation to masses of pure substances
- -Reactivity of metals
- -Reactions of acids
- -Electrolysis
- -Exothermic and endothermic reactions

Topics not assessed in this paper:

• Not applicable

#### **PHYSICS PAPER 1**

**EXAM DATE: 9th June (Afternoon)** 

Primrose Kitten Video: https://www.youtube.com/watch?v=xtw-Z0nllA4&feature=youtu.be

#### Practicals;

14: an investigation to determine the specific heat capacity of one or more materials. The investigation will involve linking the decrease of one energy store (or work done) to the increase in temperature and subsequent increase in thermal energy stored.

16: use circuit diagrams to construct appropriate circuits to investigate the I-V characteristics of a variety of circuit elements, including a filament lamp, a diode and a resistor at constant temperature.

List of topics in Specification order;

- -Energy changes in a system, and the ways energy is stored before and after such changes
- -Energy transfers
- -Changes of state and the particle model
- -Particle model and pressure
- -Atoms and isotopes
- -Atoms and nuclear radiation

#### Topics not assessed in this paper:

- -Series and parallel circuits
- -Domestic uses and safety
- -Internal energy and energy transfers

#### **BIOLOGY PAPER 2**

**EXAM DATE: 15th June (Morning)** 

Primrose Kitten Video https://www.youtube.com/watch?v=Uqti-xPnT-8

Practicals;

7: measure the population size of a common species in a habitat

List of topics in Specification order;

- -Hormonal control in humans
- -Organisation of an ecosystem
- -Biodiversity and the effect of human interaction on an ecosystem

#### Topics not assessed in this paper:

- -The human nervous system
- -Contraception
- -Sexual and asexual reproduction
- -DNA and the genome
- -Genetic inheritance
- -Inherited disorders
- -Sex determination
- -Variation and evolution
- -The development of understanding of genetics and evolution
- -Adaptations
- -Land use
- -Deforestation in this paper:

Topics not listed may be assessed in low-tariff questions

#### **CHEMISTRY PAPER 2**

**EXAM DATE: 20th June (Morning)** 

Primrose Kitten Video: https://www.youtube.com/watch?v= HJu8WTtZJU

The Whole of AQA Chemistry Paper 2 in only 48 minutes!

#### Practicals;

- 11: investigate how changes in concentration affect the rates of reactions by a method involving measuring the volume of a gas produced and a method involving a change in colour or turbidity.
- 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should calculate Rf values.

List of topics in Specification order;

- -Rate of reaction
- -Reversible reactions and dynamic equilibrium
- -Carbon compounds as fuels and feedstock
- -Purity, formulations and chromatography
- -The composition and evolution of the Earth's atmosphere
- -Using the Earth's resources and obtaining potable water

Topic not assessed in this paper:

-Identification of common gases

#### **PHYSICS PAPER 2**

**EXAM DATE: 23rd June (Morning)** 

Primrose Kitten Video: https://www.youtube.com/watch?v=X1aMXCr75Kw

#### Practicals;

21: investigate how the amount of infrared radiation absorbed or radiated by a surface depends on the nature of that surface.

List of topics in Specification order;

- -Forces and their interactions
- -Describing motion along a line
- -Forces, accelerations and Newton's Laws of motion
- -Momentum
- -Electromagnetic waves
- -The motor effect

#### Topics not assessed in this paper:

- -Forces and elasticity
- -Forces and braking
- -Permanent and induced magnetism, magnetic forces and fields

#### **Command Words**

Command words are the words and phrases used in exams that tell students how they should answer a question.

#### **Balance**

Students need to balance a chemical equation.

#### Calculate

Students should use numbers given in the question to work out the answer.

#### Choose

Select from a range of alternatives.

## Compare

This requires the student to describe the similarities and/or differences between things, not just write about one.

## Complete

Answers should be written in the space provided, for example, on a diagram, in spaces in a sentence or in a table.

#### **Define**

Specify the meaning of something.

#### Describe

Students may be asked to recall some facts, events or process in an accurate way.

## Design

Set out how something will be done.

#### **Determine**

Use given data or information to obtain and answer.

#### Draw

To produce, or add to, a diagram.

#### **Estimate**

Assign an approximate value.

#### **Evaluate**

Students should use the information supplied, as well as their knowledge and understanding, to consider evidence for and against when making a judgement.

## Explain

Students should make something clear, or state the reasons for something happening.

## Give

Only a short answer is required, not an explanation or a description.

## How/What/When/Where/Which/Who/Why

These can be used for more direct questions.

## Identify

Name or otherwise characterise.

## **Justify**

Use evidence from the information supplied to support an answer.

### Label

Provide appropriate names on a diagram.

#### Measure

Find an item of data for a given quantity.

### Name

Only a short answer is required, not an explanation or a description. Often it can be answered with a single word, phrase or sentence.

#### Plan

Write a method.

#### **Plot**

Mark on a graph using data given.

#### **Predict**

Give a plausible outcome.

#### Show

Provide structured evidence to reach a conclusion.

#### Sketch

Draw approximately.

## Suggest

This term is used in questions where students need to apply their knowledge and understanding to a new situation.

### Use

The answer must be based on the information given in the question. Unless the information given in the question is used, no marks can be given. In some cases students might be asked to use their own knowledge and understanding.

## Write

Only a short answer is required, not an explanation or a description.

#### Subject Specific Vocabulary

#### Accuracy

A measurement result is considered accurate if it is judged to be close to the true value.

#### Calibration

Marking a scale on a measuring instrument. This involves establishing the relationship between indications of a measuring instrument and standard or reference quantity values, which must be applied. For example, placing a thermometer in melting ice to see whether it reads zero, in order to check if it has been calibrated correctly.

#### Data

Information, either qualitative or quantitative, that has been collected.

#### Error

See also uncertainty.

#### Measurement error

The difference between a measured value and the true value.

#### **Anomalies**

These are values in a set of results which are judged not to be part of the variation caused by random uncertainty.

#### Random error

These cause readings to be spread about the true value, due to results varying in an unpredictable way from one measurement to the next. Random errors are present when any measurement is made, and cannot be corrected. The effect of random errors can be reduced by making more measurements and calculating a new mean.

#### Systematic error

These cause readings to differ from the true value by a consistent amount each time a measurement is made. Sources of systematic error can include the environment, methods of observation or instruments used. Systematic errors cannot be dealt with by simple repeats. If a systematic error is suspected, the data collection should be repeated using a different technique or a different set of equipment, and the results compared.

#### Zero error

Any indication that a measuring system gives a false reading when the true value of a measured quantity is zero, eg the needle on an ammeter failing to return to zero when no current flows. A zero error may result in a systematic uncertainty.

#### **Fvidence**

Data which has been shown to be valid.

#### Fair test

A fair test is one in which only the independent variable has been allowed to affect the dependent variable.

## Hypothesis

A proposal intended to explain certain facts or observations.

#### Interval

The quantity between readings, eg a set of 11 readings equally spaced over a distance of 1 metre would give an interval of 10 centimetres.

#### Precision

Precise measurements are ones in which there is very little spread about the mean value. Precision depends only on the extent of random errors - it gives no indication of how close results are to the true value.

#### Prediction

A prediction is a statement suggesting what will happen in the future, based on observation, experience or a hypothesis.

### Range

The maximum and minimum values of the independent or dependent variables; important in ensuring that any pattern is detected. For example a range of distances may be quoted as either: 'From 10 cm to 50 cm' or 'From 50 cm to 10 cm'.

## Repeatable

A measurement is repeatable if the original experimenter repeats the investigation using same method and equipment and obtains the same results. Previously known as reliable.

## Reproducible

A measurement is reproducible if the investigation is repeated by another person, or by using different equipment or techniques, and the same results are obtained. Previously known as reliable.

### Resolution

This is the smallest change in the quantity being measured (input) of a measuring instrument that gives a perceptible change in the reading.

## Sketch graph

A line graph, not necessarily on a grid, that shows the general shape of the relationship between two variables. It will not have any points plotted and although the axes should be labelled they may not be scaled.

#### True value

This is the value that would be obtained in an ideal measurement.

## Uncertainty

The interval within which the true value can be expected to lie. Whenever a measurement is made, there will always be some uncertainty or doubt about the result obtained. Uncertainty can be expressed in terms of spread of values obtained. For example, a length of 56 cm ±2 cm would mean the true value could be anywhere between 54 cm and 58 cm.

## Validity

Suitability of the investigative procedure to answer the question being asked. For example, an investigation to find out if the rate of a chemical reaction depended upon the concentration of one of the reactants would not be a valid procedure if the temperature of the reactants was not controlled.

#### Valid conclusion

A conclusion supported by valid data, obtained from an appropriate experimental design and based on sound reasoning.

### **Variables**

These are physical, chemical or biological quantities or characteristics.

#### Categoric

Categoric variables have values that are labels, eg names of plants or types of material.

#### Continuous

Continuous variables can have values (called a quantity) that can be given a magnitude either by counting (as in the case of the number of shrimp) or by measurement (eg light intensity, flow rate etc). Previously known as discrete variable.

#### Control

Control variable is one which may, in addition to the independent variable, affect the outcome of the investigation and therefore has to be kept constant or at least monitored.

#### Dependent

Dependent variable is the variable of which the value is measured for each and every change in the independent variable.

#### Independent

Independent variable is the variable for which values are changed or selected by the investigator.

#### Required Practicals

| Enzymes                                                                                                                                                                                                                                                                                                                                                              | Spec ref                                                       | Skills, ATs and maths skills (MS)                                                                                                                                                                                                                                                                                                                                                                                                                                         | Content including WS                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Key words and subject specific vocabulary                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Investigate the effect of pH on the rate of reaction of amylase enzyme.  Students should use a continuous sampling technique to determine the time taken to completely digest a starch solution at a range of pH values. Iodine reagent is to be used to test for starch every 30 seconds. Temperature must be controlled by use of a water bath or electric heater. | Trilogy<br>4.2.2.1<br>Synergy<br>4.7.4.7<br>Biology<br>4.2.2.1 | AT1 – use of appropriate apparatus to make and record a range of measurements accurately including time, temperature, volume of liquids and pH.  AT2 – safe use of appropriate heating devices and techniques including use of a Bunsen burner and water bath or electric heater.  AT5 – measurement of rates of reaction by a variety of methods including using colour change of an indicator.  MS  Decimal form (1a).  Percentages (1c).  Carry out rate calculations. | Enzymes as biological catalysts:  • their function in process of digestion  • simple structure and how they work (lock and key )  • sites of production  • word equation  • how temperature and pH affect them  Names of enzymes and type of molecule they act on:  • Carbohydrases: starch, carbohydrate, glucose  • Lipases: fats and oils, lipids, glycerol and fatty acids  • Proteases: proteins, amino acids  pH scale  Why use a water bath  Why use continuous sampling | Carbohydrase Lipids Glycerol Fatty acids Protease Amino acids Types of errors |
|                                                                                                                                                                                                                                                                                                                                                                      |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Relate to digestive system and the uses of the products of digestion link to metabolism (4.4.2.3)                                                                                                                                                                                                                                                                                                                                                                               |                                                                               |

| Food tests                                                                                                                                                                          | Spec ref                                                       | Skills, ATs and maths skills (MS)                                                                                   | Content including WS                                                                                               | Key words and subject specific vocabulary                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Use qualitative reagents to test for a range of carbohydrates, lipids and proteins. To include: Benedict's test for sugars; iodine test for starch; and Biuret reagent for protein. | Trilogy<br>4.2.2.1<br>Synergy<br>4.2.1.5<br>Biology<br>4.2.2.1 | AT2 – safe use of appropriate heating devices and techniques including the use of a Bunsen burner and a water bath. | Food tests, indicator and colour change  Carbohydrates – sugars and starch  Why you need a water bath  WS 2.3, 2.4 | Indicator Reagent Iodine Benedict's solution Starch Biuret Spotting tile Water bath Pipette Lipids |

| Photosynthesis                                                                                                      | Spec ref                                                       | Skills, ATs and maths skills (MS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Content including WS                                                                                                                                                                                                                                                                                                                                                                                                                              | Key words and subject specific vocabulary                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Investigate the effect of light intensity on the rate of photosynthesis using an aquatic organism such as pondweed. | Trilogy<br>4.4.1.2<br>Synergy<br>4.2.2.6<br>Biology<br>4.4.1.2 | AT1 – use of appropriate apparatus to make and record a range of measurements accurately, including time and volume of a gas.  AT3 – use of appropriate apparatus and techniques for the observation and measurement of biological changes and/or processes.  AT4 – safe and ethical use of living organisms (plants or animals) to measure physiological functions and responses to the environment.  AT5 – measurement of rates of reaction by a variety of methods including the production of gas.  MS  Measure and calculate rates using data from graphs | Photosynthesis: What it is, where it occurs, word equation, products and what they are used for  Rate of photosynthesis: effects of variables on rate of photosynthesis  How rate is limited (HT)  Interpreting graphs of limiting factors (1 factor only FT more than 1 HT)  Application to greenhouses  Inversesquare law and light intensity (HT)  Balanced symbol equations (HT)  Use of glucose from photosynthesis  Safety of using ethanol | Photosynthesis Respiration Cellulose Protein synthesis Nitrate ions Phloem Prediction Range Continuous variable Control, dependent, independent |
|                                                                                                                     |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Linking ideas – translocation and structure of phloem is adapted to its functions in the plant  WS 3.1, 3.3, 3.7                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 |

| Field investigations                                   | Spec ref           | Skills, ATs and maths skills (MS)                                                                                                    | Content including WS                        | Key words and subject   |
|--------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------|
|                                                        |                    |                                                                                                                                      |                                             | specific vocabulary     |
| Measure the population size of a common species        | Trilogy<br>4.7.2.1 | AT1 – use of appropriate apparatus to make and record a range of measurements                                                        | Levels of organisation in an ecosystem      | Transects               |
| in a habitat.                                          | Synergy            | accurately including length and area.                                                                                                | Feeding relationships –                     | Quadrats                |
| Use sampling techniques to investigate the effect of a | 4.4.2.4            | AT 4 – safe and ethical use of a living organism (plants or animals) to measure                                                      | food chains and webs                        | Species                 |
| factor on the distribution of this species.            | Biology<br>4.7.2.1 | physiological functions and responses to the environment.                                                                            | Predator and prey relationships             | Ecosystems              |
|                                                        |                    | AT 6 application of appropriate compling                                                                                             | How to measure the size of                  | Habitats                |
|                                                        |                    | AT 6 – application of appropriate sampling techniques to investigate the distribution and abundance of organisms in an ecosystem via | a population (always poorly answered)       | Population              |
|                                                        |                    | direct use in the field.                                                                                                             | How to oncure compling is                   | Community               |
|                                                        |                    | MS Understand the principles of sampling as                                                                                          | How to ensure sampling is random            | Producers and consumers |
|                                                        |                    | applied to scientific data (2d)                                                                                                      | Interdependence and competition             | Predator and prey       |
|                                                        |                    | Mean, mode and median (2f)                                                                                                           | How to carry out a line                     | Stable community        |
|                                                        |                    | Scatter diagrams (2g)                                                                                                                | transect                                    | Abiotic factor          |
|                                                        |                    | Calculate areas (5c)                                                                                                                 | Factors affecting communities – abiotic and | Biotic factor           |
|                                                        |                    |                                                                                                                                      | biotic                                      | Biodiversity            |
|                                                        |                    |                                                                                                                                      | ws                                          |                         |
|                                                        |                    |                                                                                                                                      | 2.5, 3.6                                    |                         |

| Making salts                                            | Spec ref             | Skills, ATs and maths skills (MS)                                                   | Content including WS                                | Key words and subject specific vocabulary |
|---------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|
| Preparation of a pure, dry sample of a soluble salt     | Trilogy<br>5.4.2.3   | AT2 – safe use of appropriate heating devices and techniques including the use of   | Acids and alkalis                                   | Acid                                      |
| from an insoluble oxide or carbonate, using a Bunsen    | Synergy              | a Bunsen burner and water bath or electric heater.                                  | Reactions of acids with metals and metal            | Base                                      |
| burner to heat dilute acid and a water bath or electric | 4.7.3.2              | AT4 – safe use of a range of equipment to                                           | carbonates – word equations                         | Alkali                                    |
| heater to evaporate the solution.                       | Chemistry<br>4.4.2.3 | purify and/or separate a chemical mixture including evaporation, filtration and     | pH scale and neutralisation                         | Salt                                      |
|                                                         |                      | crystallisation.                                                                    | Making soluble salts from                           | Soluble                                   |
|                                                         |                      | AT6 – safe use and careful handling of gases, liquids and solids, including careful | metals , metal oxides,<br>hydroxides and carbonates | Insoluble                                 |
|                                                         |                      | mixing of reagents under controlled conditions, using appropriate apparatus to      | Processes – filtration and                          | Neutralisation                            |
|                                                         |                      | explore chemical changes and/or products.                                           | crystallisation                                     | Reactants                                 |
|                                                         |                      |                                                                                     | Weak and strong acids (HT)                          | Filtration                                |
|                                                         |                      |                                                                                     | <b>WS</b> 2.3, 2.4                                  | Crystallisation                           |

| Electrolysis                                                                                                                                                 | Spec ref                                                         | Skills, ATs and maths skills (MS)                                                                                                                                                                                                                                                                                                                                | Content including WS                                                                                                                                                                                                           | Key words and subject specific vocabulary                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Investigate what happens when aqueous solutions are electrolysed using inert electrodes.  This should be an investigation involving developing a hypothesis. | Trilogy<br>5.4.3.4<br>Synergy<br>4.7.5.3<br>Chemistry<br>4.4.3.4 | AT3 – use of appropriate apparatus and techniques for conducting and monitoring chemical reactions including appropriate reagents and/or techniques for the measurement of pH in different situations.  AT7 – use of appropriate apparatus and techniques to draw, set up and use electrochemical cells for separation and production of elements and compounds. | Process of electrolysis  What is formed at each electrode and why  Electrolysis of aqueous solutions  Half equations (HT)  Test for gases  Oxidation and reduction in electrolysis  Why we use electrolysis  ws  1.4, 2.1, 2.2 | Reagent Electolysis Ions Electrolytes Electrodes Anode Cathode Ionic componds Molten state Oxidation Reduction Types of variables |

| Temperature changes          | Spec ref             | Skills, ATs and maths skills (MS)                                        | Content including WS     | Key words and subject specific vocabulary |
|------------------------------|----------------------|--------------------------------------------------------------------------|--------------------------|-------------------------------------------|
| Investigate the variables    | Trilogy              | AT1 – use of appropriate apparatus to make                               | Exo and endothermic      | Exothermic                                |
| that affect temperature      | 5.5.1.1              | and record a range of measurements                                       | reactions                |                                           |
| changes in reacting          |                      | accurately, including mass, temperature and                              |                          | Endothermic                               |
| solutions, (eg acid plus     | Synergy              | volume of liquids.                                                       | Everyday examples        |                                           |
| metals, acid plus            | 4.7.3.3              |                                                                          |                          | Carbonates                                |
| carbonates, neutralisations, |                      | AT5 – making and recording appropriate                                   | Energy transfer during a |                                           |
| displacement of metals).     | Chemistry<br>4.5.1.1 | observations during chemical reactions including changes in temperature. | chemical reaction        | Neutralisation                            |
|                              |                      |                                                                          | Energy is conserved in   | Displacement                              |
|                              |                      | AT6 – safe and careful handling of gases,                                | chemical reactions       |                                           |
|                              |                      | liquids and solids including careful mixing of                           |                          | Activation energy                         |
|                              |                      | reagents under controlled conditions, using                              | Identify examples        |                                           |
|                              |                      | appropriate apparatus to explore chemical                                |                          | Reaction profiles                         |
|                              |                      | changes and/or products.                                                 | Reaction profiles        |                                           |
|                              |                      |                                                                          |                          | Resolution                                |
|                              |                      | MS                                                                       | Bonds breaking and       |                                           |
|                              |                      | Significant figures (2a)                                                 | forming (HT)             | Accuracy                                  |
|                              |                      | Means (2b)                                                               | Calculate energy         | Precision                                 |
|                              |                      | 11100110 (20)                                                            | transferred (HT)         | 1 100,01011                               |
|                              |                      | Plotting graphs (4c)                                                     |                          | Repeatability                             |
|                              |                      |                                                                          | ws                       | . iopositionity                           |
|                              |                      |                                                                          | 2.6, 2.7, 3.1            | Reproducible                              |

| Rates of reaction                                   | Spec ref             | Skills, ATs and maths skills (MS)                                                                                              | Content including WS                                  | Key words and subject |
|-----------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------|
|                                                     |                      |                                                                                                                                |                                                       | specific vocabulary   |
| Investigate how changes in concentration affect the | Trilogy<br>5.6.1.2   | AT1 – use of appropriate apparatus to make and record a range of measurements                                                  | Factors that affect rates of reactions:               | Concentration         |
| rates of reactions by a method involving measuring  | Synergy              | accurately, including mass, time, temperature and volumes of liquids and gases.                                                | <ul><li>Concentration</li><li>Pressure</li></ul>      | Surface area          |
| the volume of a gas produced and a method           | 4.7.4.3              | AT3 – use of appropriate apparatus and                                                                                         | <ul><li>surface area</li><li>temperature</li></ul>    | Catalyst              |
| involving a change in colour or turbidity.          | Chemistry<br>4.6.1.2 | techniques for conducting and monitoring chemical reactions.                                                                   | catalyst                                              | Collision theory      |
| This should be an                                   |                      | AT5 - making and recording appropriate                                                                                         | Calculating rates of reactions and units (g/s or      | Activation energy     |
| investigation involving developing a hypothesis.    |                      | observations during chemical reactions including the measurement of rates of                                                   | cm3/s)                                                | Types of errors       |
|                                                     |                      | reaction by a variety of methods such as production of gas and colour change.                                                  | Analysis of results from the reactants                | Random error          |
|                                                     |                      |                                                                                                                                |                                                       | Systematic error      |
|                                                     |                      | AT6 – safe and careful handling of liquids and solids, including careful mixing of reagents under controlled conditions, using | Quantity of reactants in terms of moles               | Zero error            |
|                                                     |                      | appropriate apparatus to explore chemical changes.                                                                             | Collision theory – understanding, predicting          |                       |
|                                                     |                      | MS                                                                                                                             | and explaining the effects of changes in variables on |                       |
|                                                     |                      | Percentages and percentage change (1c).                                                                                        | rate                                                  |                       |
|                                                     |                      | Means (2b).                                                                                                                    | <b>WS</b> 2.2, 2.3, 3.6, 3.7                          |                       |
|                                                     |                      | Draw and use the slope of a tangent to a                                                                                       |                                                       |                       |
|                                                     |                      | curve as a measure of rate of reaction (4e).                                                                                   |                                                       |                       |

| Chromatography            | Spec ref             | Skills, ATs and maths skills (MS)                                                                          | Content including WS                                                                      | Key words and subject |
|---------------------------|----------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------|
|                           | - "                  | AT4 6 6 1 11                                                                                               |                                                                                           | specific vocabulary   |
| Investigate how paper     | Trilogy              | AT4 – safe use of a range of equipment to                                                                  | What a pure substance is                                                                  | Pure                  |
| chromatography can be     | 5.8.1.3              | purify and/or separate chemical mixtures                                                                   | and how melting and boiling                                                               | F                     |
| used to separate and tell | C                    | including chromatography.                                                                                  | point are used to distinguish                                                             | Formulations          |
| the difference between    | Synergy              | MS                                                                                                         | it from a mixture. Look at                                                                | Stationer, phase      |
| coloured substances.      | 4.2.2.4              |                                                                                                            | relevant data                                                                             | Stationary phase      |
| Students should calculate | Chamiatry            | Significant figures (2a).                                                                                  | Formulations, what are is                                                                 | Mobile phase          |
| Rf values.                | Chemistry<br>4.8.1.3 | Substitute numerical values into algebrais                                                                 | Formulations – what one is,                                                               | Mobile phase          |
| Ri values.                | 4.0.1.3              | Substitute numerical values into algebraic equations using appropriate units for physical quantities (3c). | how they are made, types<br>of this that are formulations<br>– interpret info to identify | Solvent               |
|                           |                      | quantities (3c).                                                                                           | them                                                                                      | Chromatogram          |
|                           |                      |                                                                                                            | ulem                                                                                      | Cilioniatogram        |
|                           |                      |                                                                                                            | Chromatography – what its used for, explain how it works, what the different phases mean  |                       |
|                           |                      |                                                                                                            | Calculate Rf value and what it means                                                      |                       |
|                           |                      |                                                                                                            |                                                                                           |                       |
|                           |                      |                                                                                                            | Effect of using different                                                                 |                       |
|                           |                      |                                                                                                            | solvents on Rf values                                                                     |                       |
|                           |                      |                                                                                                            | What is a pure substance                                                                  |                       |
|                           |                      |                                                                                                            | Interpreting chromatograms                                                                |                       |
|                           |                      |                                                                                                            | ws                                                                                        |                       |
|                           |                      |                                                                                                            | 2.2, 3.5, 4.6                                                                             |                       |

| Specific heat capacity                                                                                                                                | Spec ref                                            | Skills, ATs and maths skills (MS)                                                                                                                                                                                                                                                                      | Content including WS                                                                                                                                                                                                              | Key words and subject specific vocabulary              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| An investigation to determine the specific heat capacity of one or more materials. The investigation                                                  | Trilogy<br>6.1.1.3<br>6.3.2.2                       | AT1 – use of appropriate apparatus to make and record measurements of mass, time and temperature accurately.                                                                                                                                                                                           | Calculate the amount of energy stored or released in a system                                                                                                                                                                     | A system                                               |
| will involve linking the decrease of one energy store (or work done) to the increase in temperature and subsequent increase in thermal energy stored. | Synergy<br>4.1.1.4<br>Physics<br>4.1.1.3<br>4.3.2.2 | AT5 – use in a safe manner appropriate apparatus to measure energy changes/transfers and associated values such as work done.  MS Recognise and use decimals (1a).  Use an appropriate number of significant figures (2a).  Find arithmetic means (2b).  y=mx+c represents a linear relationship (4b). | Change in thermal energy = mass × specific heat capacity × temperature change  Thermal energy measured in joules  Definition of specific heat capacity                                                                            | Work done/energy transfer Specific heat capacity Power |
|                                                                                                                                                       |                                                     | Plot variables (4c).  Determine the slope and intercept of a linear graph (4d).                                                                                                                                                                                                                        | Different ways to calculate power:  Power= energy transferred time  Power= work done time  Definition of work done (energy transfer)  Conservation and dissipation of energy  Calculate gradients from a graph  WS  2.3, 2.4, 2.7 |                                                        |

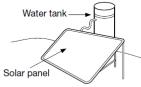
| I-V characteristics                                                                                                                                                                                       | Spec ref                                                       | Skills, ATs and maths skills (MS)                                                                                                                                                                                                                                                                                                                                                                                | Content including WS                                                                                                                                                                                                                                                                                                                                              | Key words and subject specific vocabulary                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Use circuit diagrams to construct appropriate circuits to investigate the I-V characteristics of a variety of circuit elements including a filament lamp, a diode and a resistor at constant temperature. | Trilogy<br>6.2.1.4<br>Synergy<br>4.7.2.2<br>Physics<br>4.2.1.4 | AT6 – use appropriate apparatus to measure current and potential difference and to explore the characteristics of a variety of circuit elements.  AT7 – use circuit diagrams to construct and check series and parallel circuits including a variety of common circuit elements.  MS  Use a scatter diagram to identify a correlation (2g).  y=mx+c represents a linear relationship (4b).  Plot variables (4c). | Names of components where resistance is not constant as current changes  Relationship between the resistance of common components as current changes  Use of LDRs  Drawing circuit diagrams using correct symbols  Interpreting the graphs representing these relationships (linear or non- linear), relating the curves to their function and properties  WS 3.5 | Ohmic conductor  Diodes  Thermistors  LDRs  Filament lamp |

| Radiation and absorption                         | Spec ref                      | Skills, ATs and maths skills (MS)                                                               | Content including WS                                                                                                                                                                                                                                                                     | Key words and subject specific vocabulary |
|--------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Investigate how the amount of infrared radiation | Trilogy<br>6.6.2.2            | AT1 – use appropriate apparatus to make and record a range of measurements accurately           | What are electromagnetic waves?                                                                                                                                                                                                                                                          | Absorption                                |
| absorbed or radiated by a surface depends on the | Synergy                       | including temperature.                                                                          | Types and examples of                                                                                                                                                                                                                                                                    | Reflection                                |
| nature of that surface.                          | 4.1.4.3<br>Physics<br>4.6.2.2 | AT4 – make observations of the effects of the interaction of electromagnetic waves with matter. | electromagnetic waves and how they are grouped by frequency and wavelength  Properties, uses and application of electromagnetic waves Investigate how the amount of infrared radiation absorbed or radiated by a surface depends on the nature of that surface  Different substances may | Radiation                                 |
|                                                  |                               |                                                                                                 | absorb, transmit, refract or<br>reflect electromagnetic<br>waves in ways that vary<br>with wavelength (HT)                                                                                                                                                                               |                                           |



# Quality of Written Communication Mark Scheme




|                                 | Level 1: Basic<br>1-2 Marks                                                                                                                                                                                   | Level 2: Clear<br>3-4 Marks                                                                                                                                                        | Level 3: Detailed<br>5-6 Marks                                                                                                                                                        |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Knowledge                       | Knowledge of basic information                                                                                                                                                                                | Knowledge of accurate information                                                                                                                                                  | <ul> <li>Knowledge of accurate<br/>information appropriately<br/>contextualised</li> </ul>                                                                                            |
| Understanding                   | Simple understanding                                                                                                                                                                                          | Clear understanding                                                                                                                                                                | <ul> <li>Detailed understanding,<br/>supported by relevant<br/>evidence and examples</li> </ul>                                                                                       |
| Organisation                    | <ul> <li>The answer is poorly<br/>organised, with almost no<br/>specialist terms and their<br/>use demonstrating a general<br/>lack of understanding of<br/>their meaning, little or no<br/>detail</li> </ul> | <ul> <li>The answer has some<br/>structure and organisation,<br/>use of specialist terms has<br/>been attempted but not<br/>always accurately, some<br/>detail is given</li> </ul> | <ul> <li>Answer is coherent and in<br/>an organised, logical<br/>sequence, containing a wide<br/>range of appropriate or<br/>relevant specialist terms<br/>used accurately</li> </ul> |
| Spelling, punctuation & grammar | The spelling, punctuation and grammar are very weak.                                                                                                                                                          | <ul> <li>There is reasonable<br/>accuracy in spelling,<br/>punctuation and grammar,<br/>although there may still be<br/>some errors.</li> </ul>                                    | The answer shows almost faultless spelling, punctuation and grammar.                                                                                                                  |



## **Quality of Written Communication Example - 1 Mark**



The picture shows one type of solar water heater. Water from t pumped through copper pipes inside the solar panel where the energy from the Sun.



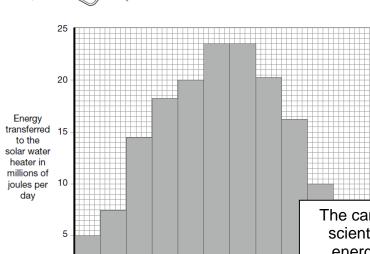
0

Each day the average Europe of hot water. It takes 16 800 this mass of water to the cor

The bar chart shows how the transferred to the water heate through the year.

Jun Jul Aug Se

There is very little in this answer, suggesting that Level 1 is the most likely area to find any marks.


### To improve:

Use the information given in the question to inform / support the answer.

There is practically no use of specialist terms.

#### To improve:

Include as many relevant specialist terms as possible, such as renewable energy source, fuel, pollution, carbon dioxide.



Feb Mar Apr May

clearly and using specialist terms where appropriate.

than using an electric immersion heater.

In this question you will be assessed on using good English, orga

The water in the tank could be heated by using an electric imme

Outline the advantages and disadvantages of using solar energy

The candidate has referred to two of the scientific points in the mark scheme – energy is free and pollution – but the reference to pollution is very weak.

To improve: In this type of question, divide the answer space into two then write 'Advantages' on the top line and 'Disadvantages' half way down the space. This will ensure that they address both parts of the question.

because

The solar heater is best because it does not cost anything to run like an impersion heater when you have to pay for the electric and it does not damage the atmosfere.

electricity

atmosphere

1/6

The spelling, punctuation and grammar are very weak

There is no structure to the answer.

**To improve:** Use paragraphs and full sentences.



# **Quality of Written Communication Example - 2 Marks**



In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

There are millions of plastic bags in use. After use most of these plastic bags are buried in landfill sites. The amount sent to landfill could be reduced if the plastic bags:

- could be reused
- could be recycled by melting and making them into new plastic products
- · could be burned to release energy.

Use the information above and your knowledge and understanding to give the positive and negative environmental impacts of using these methods to reduce the amount of plastic bags sent to landfill.

There is no structure to the answer.

#### To improve:

Use paragraphs and full sentences.

The candidate has referred to very few of the scientific points in the mark scheme.

There is practically no use of specialist terms.

#### To improve:

Include as many relevant specialist terms as possible, such as renewable energy source, fuel, pollution, carbon dioxide.

There is very little in this answer, although an attempt has been made and an advantage and a disadvantage have been given.

#### To improve:

In this type of question, divide the answer space into three then write 'Reusing' on the top line, 'Recycling' one third of the way down the space and 'Burning' two thirds of the way down the space. This will ensure that they address all three parts of the question.

Remember to give advantages and disadvantages for each process.

Reusing is the best because we don't have to make so many new plastics so we save on raw materials. Burning is worst cos it causes pollution from poisonous gases being given off. because

The spelling, punctuation and grammar are very weak



Solar panel

## **Quality of Written Communication Example - 3 Marks**



The picture shows one type of solar water heater. Water from the tank is pumped through copper pipes inside the solar panel where the water is energy from the Sun.

Each day the average European family of hot water. It takes 16 800 000 J of er this mass of water to the correct temperature

The bar chart shows how the amount of transferred to the water heater varies throughout the year.

20 Energy transferred 15 to the solar water heater in millions of joules per 10 Jun Jul Aug Sep Oct Nov Dec Feb Mar Apr May

In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate. There are a number

Outline the advantages and disadvantages of using solar energy to he than using an electric immersion heater.

This is a Level 2 answer, but there is not enough in it to award top Level 2. It is therefore awarded 3 marks.

The candidate has attempted to use the information supplied to inform their answer, and there is some reference to the graph. However, this is incomplete and rather weak.

To improve: Use the information given in the question to inform / support the answer

and punctuation.

Some technical terms are used (such as fuel and pollution), but the Sun does not qualify.

To improve: Include as many relevant specialist terms as possible, such as renewable energy source, fuel, pollution, carbon dioxide.

The candidate has some knowledge/of the subject, and has referred to several of the scientific points in the mark scheme.

> The solar heater is the best because it dosn't use fuel and that means that it dosn't cause polition. Energy from the sun is free.

It dosn't work at night so if you have run out of hot water you will have to use the imersion heater.

On the graph, the solar heater only heats the water in the summer.

The answer has some structure to it - advantages and disadvantages are given, and are separated.

The water in the tank could be heated by using an electric immersion h of errors in spelling



## **Quality of Written Communication Example - 4 Marks**



All of this demonstrates that this is a Level 2 answer, and there is enough in it to award 4 marks. In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate. The diagram below shows a food web for some of the organisms that live of The candidate clearly has some knowledge of the subject, and has referred to several of the scientific points in the mark scheme. The answer has some structure to it – energy transfers are described in the correct sequence. Kestrel The heather is eaten by vegetarians such as rabbits and voles the Short-eared vegetarians thre eaten by meat eaters such as stoats and these are then owl eaten by the fox. Some technical terms are used (such as respiration, All of the animals respire. Respirtion produces heat energy, which is faeces, and microbes), but lost to the surroundings. other terms used, such as vegetarian and meat eater Vole do not qualify. All of the animals lose waste materials such as feces. The energy in these is used by microbes. To improve: Use the specialist terms herbivore and carnivore Animals also lose energy when they move around. There are a number of errors in spelling and punctuation – Only a small percentage of the Sun's energy captured by the incorporated into the body tissues of the fox. the first paragraph is not punctuated and the second Explain, as fully as you can, what happens to the rest of the paragraph has a sentence beginning with a lower case the heather. letter. Respiration and faeces are misspelt.



## **Quality of Written Communication Example - 5 Marks**



clear from reading through this answer that the candidate has sound knowledge and understanding of the subject area.

This is clearly a Level 3 answer. However, the candidate has not mentioned the point given in the mark scheme as essential to ensure that full marks may be awarded ('respiration releases energy'), so only 5 marks are awarded.

In this question you will be assessed on using good English, organising infoclearly and using specialist terms where appropriate.

The energy transfers are presented in the correct sequence, beginning with the heather and finishing with the kestrel and fox.

The diagram below shows a food web for some of the organisms that live on moorland.

Fox Kestrel Short-eared The information is presented coherently and logically. The spelling, punctuation and grammar are all very good; although there are a Vole couple of small errors. The candidate has described a wide range of ways in which energy is 'lost'. Heat

Only a small percentage of the Sun's energy captured by the heather is eventually incorporated into the body tissues of the fox.

answer contains a wide range of specialist terms (such as producer, vore, carnivore, respiration, faeces, bacteria, organic, carbohydrate, environment, energy transfer), used correctly.

The heather is a producer. Light energy captured by the heather is converted into carbohydrates, which are then converted into a wide range of organic compounds. Some of the carbohydrates are used in respiration by the heather. Some of the energy is transferred to the environment.

Heather is eaten by herbivores such as rabbits. However, these herbivores do not eat all the heather. Some of it eventually dies and the organic compounds in the cells are broken down and absorbed by micro-organisms such as bacteria. The bacteria use some of the organic compounds in respiration, transferring energy to the environment.

The herbivores cannot digest all parts of the heather, so some of the organic compounds pass out of the herbivores, bodies in the faeces. Herbivores respire, and some of the energy is use for growth and some is used in locomotion. Much of the energy is transferred to the environment as heat. Thus only a small proportion of the energy that the herbivores obtain from the heather is transferred to the carnivores such as kestrels and foxes.



## **Quality of Written Communication Example - 6 Marks**



In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

There are millions of plastic bags in use. After use most of these plastic bags are buried in landfill sites. The amount sent to landfill could be reduced if the plastic bags:

- could be reused
- could be recycled by melting and making them into new plastic products
- could be burned to release energy.

Use the information above and your knowledge and understanding to give the positive and negative environmental impacts of using these methods to reduce the amount of plastic bags sent to landfill.

It is clear from reading through this answer that the candidate has sound knowledge and understanding of the subject area, covering a wide range of the points in the mark scheme.

The information is presented coherently and logically.

The spelling, punctuation and grammar are exemplary.

The answer contains a wide range of specialist terms correctly used, such as raw materials, fuel, carbon dioxide, atmosphere, combustion, greenhouse effect, toxic, generate.

The candidate has referred clearly to all three methods, and to both positive and negative effects on the environment.

This is a top Level 3 answer, satisfying all of the criteria for 6 marks.

Reusing the plastic bags

Reusing the plastic bags reduces the amount of raw materials needed to produce plastics. It also reduces the amount of fuel used in the manufacture of plastics. Burning less fuel will reduce the amount of carbon dioxide released into the atmosphere. However, when the bag splits it may be dumped in a landfill.

Recycling the plastic bags

Recycling plastic bags also reduces the amount of raw materials used to produce plastics and the amount of fuel used in the manufacture of plastics. However, the recycling process requires energy from the combustion of fuel, and the carbon dioxide produced will enhance the greenhouse effect.

Burning the plastic bags

Burning the plastic bags releases carbon dioxide into the atmosphere, enhancing the greenhouse effect. The combustion may also release toxic gases. However, the energy released could be used to generate electricity, reducing the amount of fuel used.



## **Quality of Written Communication How to get the marks**



In this question you will be assessed on using good English, organising information and using specialist terms where appropriate.

Rock salt is a mixture containing salt (sodium chloride) that we get from the Earth'

To get pure salt from rock salt we need to separate the pure salt from the other substances in the mixture.

Describe how you would obtain pure salt from rock salt in the laboratory. You should include in your answer the apparatus that you would use.

## **Spelling, punctuation & grammar:**

You should ensure:

- All words are spelled correctly.
- Punctuation is used correctly.
- Sentences and paragraphs follow grammatical conventions.

### **Knowledge & understanding:**

Include as many relevant specialist terms as possible, such as mortar & pestle, dissolve, filter, filtrate and evaporate

## Organisation:

In this type of question, divide the answer space into two then write 'Apparatus' on the top line, 'Method' one third of the way down the space. This will ensure that you address all parts of the question. Remember your method should be able to be followed by another person.

| 0 marks             | Level 1 (1-2 marks)       | Level 2 (3-4 marks)        | Level 3  | (5–6 marks)     |
|---------------------|---------------------------|----------------------------|----------|-----------------|
| No relevant content | There is a brief          | There is a description     | There    | is a clear,     |
|                     | description of the        | of the laboratory          | detailed | description of  |
|                     | laboratory procedure      | procedure for obtaining    | the I    | aboratory       |
|                     | for                       | a sample of pure salt      | procedur | e for obtaining |
|                     | obtaining a sample of     | from rock salt that        | a sampl  | e of pure salt  |
|                     | pure salt from rock salt. | could be followed by       | from     | rock salt       |
|                     | The answer                | another person. The        | that co  | uld easily be   |
|                     | would not necessarily     | answer <b>must</b> mention | followe  | d by another    |
|                     | allow the procedure to    | that the rock salt         | per      | son. The        |
|                     | be completed              | is mixed with water.       | answer i | nust mention    |
|                     | successfully by another   |                            | that the | rock salt is    |
|                     | person.                   |                            | mixed    | with water.     |

Examples of points made in the response could include:

crush the rock salt;
with a mortar and pestle;
mix the crushed rock with water
in a beaker
stir and warm to dissolve the salt;
filter the mixture to remove the undissolved solids;
using filter paper and funnel;
put the filtrate into an evaporating dish;
warm using Bunsen burner, tripod and gauze;
to evaporate to dryness



## Quality of Written Communication Examiner's comments



In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Limestone contains calcium carbonate.

There is a large deposit of limestone under an area of natural beauty.

A company wants to quarry this limestone and build a kiln near to the quarry to make cement.

#### Area of natural beauty







Explosives will be used to extract the limestone out of the ground.

Heavy machinery will be used to lift and crush the limestone.

Lorries will be used to transport the limestone to the kiln to make cement.

The lorries and the heavy machinery will use diesel fuel.

Quarrying limestone and making cement will have an impact on everything near the area.

Describe the positive and the negative impacts of quarrying limestone and making cement.

This was the first of the new six mark questions including quality of written communication. This was marked holistically, the answer linked to three levels on a best fit basis. The number of positive impacts and negative impacts was taken into account, as was the detail given in each one. A good answer would cover both the positive impacts and negative impacts of quarrying limestone and making cement. The answer should be written as continuous prose. Bullet points are acceptable, however, each point should be written as a complete sentence. No credit is given for simply repeating things that are given in the stem to the question. The spelling, punctuation and grammar, together with the use of specialist terms, are also considered before a final mark is awarded. Most students were able to give at least one positive impact and one negative impact of quarrying in this area. However, although descriptions were often clear, many lacked the necessary detail to achieve marks at the highest level. Vague comments, such as 'this is bad for the environment' or 'this causes a lot of pollution' are not creditworthy. Where reference is made to visual, noise or atmospheric pollution, students must clearly describe the source of this pollution to gain any credit. Not surprisingly, few students scored full marks, but equally very few failed to score.

| 0 marks     | Level 1<br>(1–2 marks) | Level 2<br>(3–4 marks)  | Level 3<br>(5–6 marks) |
|-------------|------------------------|-------------------------|------------------------|
| No relevant | There is a simple      | There is a clear        | There is a detailed    |
| content     | description of a       | description of both     | description of both    |
|             | positive and / or a    | a positive <b>and</b> a | positive impacts       |
|             | negative impact        | negative impact         | and negative           |
|             | caused by the plan     | caused by the plan      | impacts caused by      |
|             | to quarry              | to quarry               | the plan to quarry     |
|             | limestone and / or     | limestone and / or      | limestone and / or     |
|             | make cement.           | make cement.            | make cement.           |

## examples of the chemistry points made in the response Positive impacts:

Limestone / cement is used for building; Limestone needed for industrial processes; Company landscapes / provides recreation facilities in the quarry after use; Provides employment; Improves local economy; Improved transport links

#### **Negative impacts:**

Destruction of habitats; Fewer plants / trees to absorb carbon dioxide; Example of visual pollution; Example of noise pollution; Example of atmospheric pollution;

More traffic